Convergence of the ghost fluid method for elliptic equations with interfaces

نویسندگان

  • Xu-Dong Liu
  • Thomas C. Sideris
چکیده

This paper proves the convergence of the ghost fluid method for second order elliptic partial differential equations with interfacial jumps. A weak formulation of the problem is first presented, which then yields the existence and uniqueness of a solution to the problem by classical methods. It is shown that the application of the ghost fluid method by Fedkiw, Kang, and Liu to this problem can be obtained in a natural way through discretization of the weak formulation. An abstract framework is given for proving the convergence of finite difference methods derived from a weak problem, and as a consequence, the ghost fluid method is proved to be convergent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ABCD matrix for reflection and refraction of laser beam at tilted concave and convex elliptic paraboloid interfaces and studying laser beam reflection from a tilted concave parabola of revolution

Studying Gaussian beam is a method to investigate laser beam propagation and ABCD matrix is a fast and simple method to simulate Gaussian beam propagation in different mediums. Of the ABCD matrices studied so far, reflection and refraction matrices at various surfaces have attracted a lot of researches. However in previous work the incident beam and the principle axis of surface are in parallel...

متن کامل

A front-tracking/ghost-fluid method for fluid interfaces in compressible flows

A front-tracking/ghost-fluid method is introduced for simulations of fluid interfaces in compressible flows. The new method captures fluid interfaces using explicit front-tracking and defines interface conditions with the ghost-fluid method. Several examples of multiphase flow simulations, including a shock–bubble interaction, the Richtmyer–Meshkov instability, the Rayleigh–Taylor instability, ...

متن کامل

Second Order Multigrid Methods for Elliptic Problems with Discontinuous Coefficients on an Arbitrary Interface, I: One Dimensional Problems

In this paper we present a one dimensional second order accurate method to solve Elliptic equations with discontinuous coefficients on an arbitrary interface. Second order accuracy for the first derivative is obtained as well. The method is based on the Ghost Fluid Method, making use of ghost points on which the value is defined by suitable interface conditions. The multi-domain formulation is ...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Convergence of Finite Difference Methods for Poisson’s Equation with Interfaces

In this paper, a weak formulation of the discontinuous variable coefficient Poisson equation with interfacial jumps is studied. The existence, uniqueness and regularity of solutions of this problem are obtained. It is shown that the application of the Ghost Fluid Method by Fedkiw, Kang, and Liu to this problem in [9] can be obtained in a natural way through discretization of the weak formulatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2003